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Chiral phase transition in high-energy collisions
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High-energy collisions provide unprecedented opportunities for making make global ex-
plorations of chiral symmetry in strongly interacting matter. This presentation reviews the
general features of the chiral phase diagram, explains the character of the non-equilibrium
dynamics occurring in the collision zone and its expected effects, and illustrates suitable
methods of analysis by which signals may be extracted from the experimental data.

1. INTRODUCTION

Phase transitions in strongly interacting systems provide an important focal point in
modern physics. Of particular interest in the context of relativistic heavy ion research are
the liquid-gas phase transition in dilute and fairly cold nuclear matter, the chromodynamic
deconfinement transition expected at high pressures, and the restoration of (approximate)
chiral symmetry at high temperature. The present discussion is concerned with this latter
phenomenon.

Due to the relative smallness of the v and d quark masses, chiral symmetry is an
approximate symmetry in the non-strange sector of the strong interaction. Moreover, in
the familiar low-energy world, it is spontaneously broken and the chiral order parameter
acquires a large value in vacuum, (gq) = fr = 92 MeV. As the system is agitated, this
chiral alignment will tend to weaken and, at sufficiently high temperatures, the system will
approach perfect invariance with regard to chiral rotations. For a pedagogical introduction
into the concepts of chiral symmetry in nuclear physics, see Ref. [1].

The advent of high-energy nuclear collisions offers an opportunity for investigating
the behavior of this fundamental symmetry over a wide range of environments. We
therefore first discuss the general features expected for systems in statistical equilibrium,
concentrating on the simplest scenario of a baryon-free environment.

It is expected that the high-energy collisions planrned at RHIC will lead to energy
densities reached at mid rapidity that exceed the critical value for the restoration of
chiral symmetry. If indeed the transient occurrence of such a hot region causes the
local order parameter to become significantly reduced in magnitude, then its subsequent
non-equilibrium relaxation towards the normal vacuum may generate large-amplitude
coherent oscillations of the pion field. This novel phenomenon is commonly referred
to as disoriented chiral condensates (DCC) and we include a discussion of its possible
observational effects. For DCC reviews, see Refs. [2-4].
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2. STATISTICAL EQUILIBRIUM

A simple theoretical tool for the global exploration of chiral symmetry in baryon-free
systems is provided by the linear & model. It describes the O(4) chiral field ¢(r,t) = (o, 7)
by means of a simple effective quartic interaction,

L = 0,00 "¢ — Ypop—") + Ho ,dpo¢p = o(r) +w(x) w(). (1)

The three parameters, A, v, and H, are usually fixed to reproduce the values of the pion
decay constant f,, the free pion mass m,, and the mass of the schematic ¢ meson, m,.
The equation of state can be conveniently studied in a semi-classical mean-field ap-
proximation [5], in which the field operators are treated as real functions, while the initial
occupancies of the individual quasiparticle modes obey quantum statistics, in analogy
with the familiar nuclear Hartree treatment. It is instructive to separate the field into an
order parameter, which can be regarded as a constant throughout the test volume con-
sidered, and the residual part which then represents quasi-particle agitations relative to
the (false) vacuum defined by the value of the order parameter, ¢(r,t) = ¢p(t) + d¢p(r,1).
At a given temperature T, and for a given value of the O(4) order parameter ¢, the
quasi-particle degrees of freedom are governed by a Klein-Gordon equation. Their_O(4)
mass tensor is diagonal in a system aligned with ¢ and invariant under rotations around
that direction. The eigenvalue along ¢ is ,u,ﬁ and the three others are p? (with uﬁ > ul).
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Figure 1. The free energy density Fr calculated with the semi-classical mean-field approx-
imation to the linear ¢ model, as a function of the order parameter o, for various values
temperatures T, for either the idealized O(4) symmetric case (m,=0) or for the physical
case (m.=138 MeV). At each T, the solid (or open) dots indicate the stable (or unstable)
equilibria. For T < Ty = \/iv, the order parameter must exceed a certain minimum value
before all quasiparticle modes are stable; the corresponding end points are connected by
the dotted curve. The top dashed curve is the bare potential obtained for 7=0.
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The above separation makes it relative easy to examine the statistical properties of the
system, as is best done by means of the partition function associated with the chiral field,

2y — /D -2 E(¢().Px)) _ /d4¢, e~ $Fr(d0x0) — /d4¢ Wr(g) . (2)

To obtain this result, a functional integration has been made over all the quasi-particle
components of the ﬁeld (& ¢( ),8¢(r)), as well as over the time-derivative of the order
parameter, ¢. The relatwe probability for encountering a particular value of the order
parameter, ¢ = (g0, ) is given by the usual statistical weight where the free energy
density depends only on the magnitude @y of the order parameter, and its disorientation
angle xo relative to the o direction, Fr(¢o,x0) = Vr(do,x0) + T'S7(¢o) (illustrated in
fig. 1). Here Vr is the effective potential energy density for the order parameter and St is
the entropy density carried by the quasi-particle degrees of freedom. In order to calculate
these quantities it is necessary to find the self-consistent solution to the two coupled
gap equations for the effective masses g and g, which depend on the magnitude of the
order parameter, ¢o, and the thermal fluctuations of the fields, (6(/)”) and (6¢2) (which
in turn depend on the masses). A solution exist when T and ¢o are sufficiently large,
but the lower-left part of the chiral phase diagram (see fig. 2) represents a supercritical
region within which the softest pion-like modes are unstable and experience an exponential
growth that is manifested in the spontaneous creation of pion pairs.
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Figure 2. Left: The stable (solid) and unstable (dashed) equilibrium values of the order
parameter gp = ¢ cos Xo at a given quasi-particle temperature T' as traced on the chiral
phase diagram, for the idealized O(4) symmetric case where m, vanishes. The dotted
curve delineates the boundary defined by p) =0 within which the field is supercritical.
Right: The same quantities for three finite pion masses equal to %m,.., %m,.., and m,
(=138 MeV). The dotted curve delineates the critical boundary for the latter case.
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2.1. Infinite matter

In the idealized case of perfect chiral symmetry, corresponding to a vamshing free
pion mass, m,=0, the system exhibits a first-order phase transition. Through a certain
intermediate temperature range, the free energy Fr has two minima, corresponding to
(meta)stable values of ¢, separated by a (very shallow) maximum, at which ¢ is in
unstable equilibrium. Since the quasi-particle entropy increases with the order parameter,
at a fixed temperature (because the effective masses grow larger), the outer minimum
carries the larger statistical weight and is thus the preferred one. So the phase transition
occurs at the highest T for which there are two minima. Figure 3 depicts how the effective
quasi-particle masses evolve along the equilibrinm path on the phase diagram. Above the
transition temperature, all the masses are degenerate and grow approximately linearly.

The picture changes qualitatively when a more realistic value of m, is employed. Adopt-
ing the actual value of 138 MeV, we find a free energy that has only a single minimum
at any value of T' (fig. 1) The corresponding equilibrium value of the order parameter de-
creases steadily as the system gets hotter and it ultimately approaches zero as T2 (fig. 2).
Thus the system displays a smooth crossover from the strongly broken to a weakly bro-
ken phase and perfect O(4) symmetry is never achieved. The qualitative difference is
also evident in the behavior of the effective masses (fig. 3), where p, exhibits an initially
slow but steady growth with T, while y, undergoes a minimum as T moves through the
crossover region, above which the masses quickly become nearly degenerate and become
approximately independent of m, (because the thermal contribution dominates).
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Figure 3. Left: The values of the effective quasi-particle masses py and p, as functions
of the temperature T, using the stable (solid) and unstable (dashed) equilibrium values
of the order parameter ¢y, for the idealized O(4) symmetric case where m, vanishes; all
the masses vanish at the critical point (solid dot) and they are degenerate above the
corresponding critical temperature. The dotted curve indicates the value of g along the
critical boundary where p) =0. Right: The same quantities for the three finite pion masses
considered on fig. 2 (%m,r, %m,r, and m,). The symbols mark the inversion points.
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2.2. Finite-size effects

Since the systems available for actual experimental study have a rather limited spa-
tial extension, it is important to assess the importance of finite-size effects. Generally
speaking, the statistical fluctuations in finite systems tend to wash out the sharp phase
structure characteristic of infinite matter.

The importance of this effect on the temperature dependence of the order parameter is
brought out in fig. 4. It is seen that the changes are most significant in the idealized O(4)
symmetric scenario. In particular, it can be seen how the first-order transition obtained
for m,=0 becomes less prominent as the volume is decreased to realistic magnitudes and
ultimately, for small volumes (L~5 fm), it disappears altogether. From this point on, the
difference between the results obtained for the various specified values of the free pion
mass is less noticeable. This finding suggests that a quantitative extraction of the matter
equation of state from analysis of the small finite systems involved in actual experiments
depends heavily on the availability of reliable models.

Another important finite-size effect is the fluctuation in the O(4) orientation of the order
parameter ¢ which is often believed to be large. However, because of the large entropy
carried by the quasi-particles, even a relatively modest change in the disalignment angle
xo leads to a strong reduction in the statistical weight. As a result, the equilibrium
distribution P(¢) remains fairly confined around the positive o direction, as is illustrated
in fig. 5. Thus, the idealized “sombrero” picture in which the order parameter has a fairly
isotropic distribution at high temperatures may be somewhat misleading.
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Figure 4. Left: The most probable values of the magnitude of order parameter, ¢, as a
function of the imposed quasi-particle temperature T', for m,=0 and various values of the
side length L of the cubic volume considered. The first-order phase transition obtained
for L = oo remains visible for the larger volumes and is indicated by the dotted lines.
Right: The same quantities for the physical case where m,=138 MeV.
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Figure 5. The projected equilibrium distribution of the order parameter, P(¢o,xo0) ~
#3 sin® xoWr(¢), displayed as a function of the aligned component the order parameter,
ao = g cos Xo, and the magnitude of its transverse component, mp = ¢q sin xp, for a cubic
box of side length L=8 fm. For each temperature T, the solid dot indicates the location
of the maximum in P(oo,x0) and the solid curve traces out the half-maximum contour,
as obtained by scaling the continuum results down to the finite volume 2=L3.

3. DYNAMICS AND OBSERVABLES

Although the idealized systems discussed above can yield very instructive insight into
key features of the DCC phenomenon, it is important to consider more realistic scenarios
in order to ascertain the prospects for extracting signals in actual experiments. For this
purpose it is interesting to consider the evolution of a cylinder subjected to a longitudinal
scaling expansion of the Bjorken type (a Bjorken rod[6}), since this scenario contains some
of the important features expected in real collision events. In particular, it has a surface
region through which the order parameter changes from its small value in the interior to
its vacuum value outside and it is endowed with a rapid longitudinal expansion.

Figure 6 illustrates the phase evolution of the interior region of a Bjorken rod, as the
initially hot system expands and cools while approaching a collection of free pions. It
should be noted that the early evolution of the rod interior is very similar to that of the
corresponding Bjorken matter (a very thick Bjorken rod), but later on the relaxation pro-
ceeds significantly faster due to the self-generated transverse expansion (which is absent
in the matter scenario). In particular, it should be noted that the system never enters
the supercritical region, so it appears that the originally envisioned quench scenario [7]
may not be dynamically reachable, unfortunately. Instead, the system displays an evolu-
tion much closer to adiabatic, but with certain systematic deviations: Initially the order
parameter lags behind the evolution of the effective potential, as it requires some time
to start its growth, but then, once moving, it overshoots the adiabatic equilibrium value
and enters into a weakly damped oscillation which quickly becomes centered around the
vacuum point ( fr,0). These qualitative features are rather robust with respect to changes
in such features as the initial temperature and the rod radius.
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Figure 6. Left: Phase evolution of the interior of a Bjorken rod prepared with a bulk
temperature of To=240 MeV and a radius of Ry=6 fm and the corresponding evolution of
Bjorken matter (obtained in the limit of a very thick Bjorken rod, Ry — o) [6]. In order
to be able to display an arbitrary non-equilibrium scenario, the average field fluctuation
(64%)/2 = (602 + §n2)!/? has been used in place of the temperature on the vertical axis.
Also shown are the equilibrium path and the boundary of the supercritical region. The
rod has been probed over a hollow cylindrical volume, 1<p<3 (fm). The paths are marked
at successive proper times 7=1,2,3,4,5,10,20,30 fm/c. The two evolutions are similar early
on, but the rod then relaxes significantly faster due to the generated transverse expansion.
Right: The corresponding evolutions of the squared effective pion mass p2 [6].

The phase evolution is reflected in the time-dependence of the effective pion mass, as
illustrated in fig. 6 (right): The overall decay of u2 towards the free value is overlaid with
a slowly subsiding oscillation having a frequency approximately equal to m,. As a result,
certain pion modes are being amplified [8~11].

A quantitative impression of the magnitude of this potentially observable effect can be
gained from fig. 7 (left). The enhancement is generally confined to pions with transverse
energies below 200 MeV. Taking into account that these results were obtained for rather
thin rods and that the classical field treatment generally underestimates the amplification
[11], one might expect perhaps as much as a 50% increase above the thermal background
for the softest part of the transverse spectrum.

Moreover, since the oscillations of the order parameter are well-directed in isospace, the
generated pions are correspondingly isospin polarized, a characteristic DCC feature that
leads to an anomalously wide distribution of the neutral pion fraction (which, however,
is hard to probe experimentally). The fact that only certain modes are selectively ampli-
fied enhances the pion multiplicity fluctuations as well, relative to the ordinary Poisson
statististics. This latter effect can be brought out by considering the factorial moments
of the pion multiplicity distribution, M,, = (N(N —1)--- (N —m + 1)), as illustrated in
fig. 6 (right). It is seen that the higher factorial moments for the soft pions indeed display
enhanced values, while the harder pions behave normally [6).
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Figure 7. Left: The ratio between the final transverse pion spectrum, d®*N/d?p, dy, and
the associated equilibrium spectrum obtained by fitting the dynamical result with a Bose-
Einstein form within the transverse energy interval 200-1000 MeV, for a longitudinally
expanding rod (dashed curve) having an initial radius of Ry=6 fm and with an initial
bulk temperature 75=240 MeV, in addition to the corresponding result for Ry — oo [6].
Right: The reduced factorial moments M,/ M7 obtained for a sample of rods prepared
with Ry=6 fm and T,=250 MeV and displayed as functions of the order m, for either soft
(dots) or hard (squares) pions emitted within a given rapidity interval of unit length [6].
(The reduced factorial moments for a pure Poisson multiplicity distribution are all unity.)

4. CONCLUDING REMARKS

Chiral symmetry is a fundamental concept in strong-interaction physics and the ex-
ploration of the associated phase structure is an important goal in heavy-ion physics.
Dynamical studies based on the linear o model suggest the emergence of specific observ-
able signatures with a bearing on the expected non-equilibrium relaxation of the chiral
degrees of freedom induced by a high-energy nuclear collision.
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